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Fig. 5. Improvement in phase noise and20 log(Q ) versusN for the
Ka-band oscillator.

TABLE II
MEASUREDFREQUENCYPUSHING OF THEOSCILLATORS UNDER DIFFERENT

RESONATORTERMINATING CONDITIONS

is obtained using resonatorR2, with�90 dBc/Hz at 1-MHz offset. In-
creasing the resonator length toR3 actually causes 3-dB degradation
in phase noise. Fig. 5 shows the measured phase noise improvement
and the predicted increase inQL as a function of resonator length. The
curve of20 log(QL) predicts a maximum phase-noise improvement of
35 dB with resonator length of about 200 half-wavelengths. Beyond
which, the associated line losses become increasing significant such
thatQL starts to decrease and phase noise degrades with increasing
length. This trend is in agreement with the measured results.

In addition to phase-noise reduction, an increase in frequency sta-
bility was also observed with increasing resonator length. As an indi-
cation of frequency stability, frequency pushing of the two oscillators
under different resonator terminating conditions is measured and given
in Table II. With the addition of external resonators, a dramatic decrease
in frequency pushing was observed for both oscillators.

V. CONCLUSION

This paper has demonstrated that oscillator frequency stabilization
and phase-noise reduction can be achieved using simple transmis-
sion-line resonators. A simplified derivation of the improvement in
phase noise has been verified through measured results ofK- and
Ka-bands monolithic oscillators. More than 20-dB improvement
in phase noise was obtained for both oscillators. These results are
obtained through the use of widely available coaxial cables, which may
seem impracticably long. The actual length required, however, depend
on the frequency of operation, loss characteristics, and dielectric
constant of the transmission line. The wide availability of high-quality
flexible low-loss cables, which can be compactly coiled, makes this
technique a viable option for high-frequency applications. Therefore,
the technique offers great potential in the development of low-cost
MMIC oscillators with significantly improved noise performance.
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ALPS—A New Fast Frequency-Sweep Procedure for
Microwave Devices

Din-Kow Sun, Jin-Fa Lee, and Zoltan Cendes

Abstract—The discretization of Maxwell equations results in a polyno-
mial matrix equation in frequency. In this paper, we present a robust and
efficient algorithm for solving the polynomial matrix equation. To solve this
equation for a broad bandwidth, one previously performs a discrete fre-
quency sweep where the resulting matrix needs to be inverted at numerous
frequencies, while current procedure requires only one matrix inversion.
Speed improvements compared to the discrete sweep range from 10 to 100
times, depending on number of resonance peaks encountered.

Index Terms—Lanczos algorithm, Maxwell’s equations, reduced-order
system, transfinite-element method.

I. INTRODUCTION

Over the last decade, tangential vector finite-element [1] and trans-
finite-element methods [2] have been developed for the solution of
Maxwell equations. This discretization procedure results in a polyno-
mial matrix equation in frequency. Especially in a waveguide structure,
the modal fields of the ports depend strongly on frequency. To compute
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the response of a microwave device over a broad bandwidth, one orig-
inally performed a discrete frequency sweep where the resulting ma-
trix equation is solved at numerous frequencies. This early procedure
was very time consuming. In 1993, Yuan and Cendes [3] developed
a fast frequency-sweep procedure requiring only one matrix inversion
to compute the response over the entire band. This procedure is based
on asymptotic waveform evaluation (AWE) [4], which evaluates a re-
duced-order model of the poles and zeros of the system transfer func-
tion by forming a Taylor series approximation of the response followed
by Padé approximation. The technique is fast, but suffers inaccuracies
since it was based on a power method that converges most strongly to
the nearest mode. Due to the numerical instability of the AWE, Feld-
mann and Freund [5] presented a more reliable Lanczos procedure for
solving a linear matrix equation in frequency. Later, Sun [6], [7] further
proposed an adaptive Lanczos–Padé sweep (ALPS) to solve a polyno-
mial matrix equation. An ALPS is a Lanczos type of procedure that
solves only linear matrix equation in frequency. When an ALPS is ap-
plied to solve a polynomial matrix equation, it linearizes the equation
at a couple of points and, therefore, it typically requires five time-con-
suming matrix solutions.

This paper begins by deriving the polynomial matrix equation
using a transfinite-element method. Replacing the scattering matrix
with a total scattering matrix, we not only reduce the number of
right-hand-side vectors, but preserve a symmetric property for the
scattering matrix over the entire band. However, property of energy
conservation is exactly obeyed only at the expansion frequency. In
Section III, we project this large dimensional matrix equation onto a
much smaller dimensional one that can be solved discretely. We then
discuss how one generates the projected vector set by block Lanczos
iteration [8] such that the vector set contains all the eigenvectors of
the interested band. With the computed locations of system poles,
i.e., the eigenvalues of the matrix equation, one can knowingly select
the frequency points to solve, and plot the frequency response curve
without missing resonance peaks. The procedure is validated with
some microwave structures in Section IV. This new ALPS procedure
has been employed in the electromagnetics simulation package HFSS.

II. TRANSFINITE-ELEMENT FORMULATION

The scattering problem of a typical four-port microstrip structure, as
shown in Fig. 1, can be solved by applying transfinite-element formu-
lation to the following dispersive vector wave equation:

r�
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�r
r�E � k

2
"r(s)E = 0 (1)
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s =
! � !o

!o
"r(s) = (s+ 1)
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and!o is the point of expansion. This gives rise to the following matrix
equation:
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(2)

where the subscriptsI andP distinguish the unknown coefficients as-
sociated with the interior and port solutions,M is a matrix mapping
interior solution on the ports to the modal coefficients,EI is a mul-
ticolumn interior solution vector, andS is the generalized scattering

Fig. 1. Four-port microstrip structure.

Fig. 2. Field dispersion of a rectangular waveguide of dimensions of
8� 16 mm . jEcj is the field strength at 15 GHz.

matrix, respectively. The matrix entries are to be computed from a set
of basis functions
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Thorough derivation has been shown in [9]. It should be noticed thatM

is a strong function ofs in the case of waveguide since the modal fields
of the ports vary rapidly with frequency, as shown in Fig. 2. When
approaching the cutoff frequency of waveguide, the field magnitude
reaches infinity.

The right-hand side of (2) can be greatly simplified with a total scat-
tering matrixS0 = I + S into

ZII ZIPM

MTZPI MTZPPM + j!o�o(1 + s)I

EI

S0

= 2j!o�o(1 + s)
0

I
: (4)

Since the frequency dependency of the right-hand-side vectors is fac-
torized, computational time is considerably reduced.

III. N EW ALPS

A. Formulation

Equation (4) can be approximated by the following polynomial ma-
trix equation:

Ao �

n

i=1

s
i
Ai x(s) = b(s) (5)
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wherenA is determined by bounding the difference between (4) and
(5). Testing (5) with a vector setV = fv1; v2; . . . ; vn g and looking
for a solutionx(s) = V x(s) gives

Ho �
n

i=1

s
i
Hi x(s) = V

T
b(s) (6)

whereHk = V TAkV , k = 0; . . . ; nA. Therefore, the solution of (5)
is

x(s) = V
1

Ho �
n

i=1

siHi

V
T
b(s): (7)

The dimension of (7), i.e.,nV , is small enough to be solved with the
Gaussian solver to perform a discrete sweep.

TheS-matrix that we are interested in is

S(s) = 2(1 + s)
eTV
1

Ho �
n

i=1

siHi

V
T
e� I (8)

whereeT = [0 I] and
 = j!0�0. Notice thatS(s) = ST (s). At the
point of expansions = 0, x = (1; 0; 0 . . . 0)T , x = A�1o b(0) and,
therefore, the solution is exact.

The following theorem can be proven for the transfinite-element
method.

Theorem 1: For a lossless system, theS-matrix computed directly
from (2) obeys the property of energy conservation, i.e.,SS� = I .

Proof: Equation (2) can be solved by

S = (Y + 
(1 + s)I)�1(�Y + 
(1 + s)I)

where

Y = M
T
ZPPM �M

T
ZPIZ

�1

II ZIPM:

For a lossless system,Z is real and, thus, so isY , i.e.,Y = Y �. Thus,

SS
� = Y + 
(1 + s)I

�1

�Y + 
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� Y � 
(1 + s)I
�1

�Y � 
(1 + s)I = I:

In theory, the ALPS solution satisfies the property only at the expansion
frequency, but our numerical results obey it fairly well over the entire
band.

B. Procedure

The entire procedure consisting of computing the polynomial matrix
equation, generating the vector set, and solving the matrix equation of
smaller dimension is listed in the following steps.

Step 1) Compute the frequency dependency of the matrix entries.
This is done by adaptively adding more points until enough
frequency points are chosen to provide a good approxima-
tion [10]. Step 1 gives younA and (5).

Step 2) Start with 0

I
to generateV for the (Ao; A1) pair by block

Lanczos iteration with selective orthogonalization [11].
If the selective orthogonalization is not employed, the
Lanczos iteration will eventually fail. Using the facts that
Ai

�= 0 wheni � 3 andA2
�= 0:5A1, one can estimate

the poles of (5), i.e.,p, from the computed eigenvalues of
(Ao; A1); � by the following relationship:

p = �1 +
p
1 + 2�: (9)

Fig. 3. Microstrip T-junction.

Fig. 4. Comparison of scattering parameters for Fig. 3. ALPS(c) is the ALPS
solution neglecting the dispersion of the port solution.

Since the poles converge more or less sequentially ac-
cording to its distance from the expansion frequency on the
complex plane, one can terminate the procedure if the latest
converged pole is located outside the circle covering the
interested band with the center of circle at the expansion
frequency, or one can plug the solution back to (5) to
compute the residues for the entire band, and examine it if
a good solution is reached.

Step 3) ComputeHi ’s.
Step 4) To computeS(s), solve (6) directly according to the loca-

tions of the estimated poles. If the poles are close to the real
axis, we need to compute many points around the poles.

IV. NUMERICAL RESULTS

Since the numerical solution of the discrete sweep of (2) is the exact
solution of the fast sweep, we shall compare ALPS results with this
results. The first geometry, shown in Fig. 3, is a microstrip T-junc-
tion, where the infinitively thin microstrip is 0.23-mm wide, the stub
is 0.51-mm wide and 1.53-mm long, the substrate is 0.254-mm thick,
and the relative dielectric constant of the substrate is 9.9. This problem
is solved with both the ALPS and AWE methods. As shown in Fig. 4,
the numerical results of both methods are indistinguishable, and both
agree with the discrete sweep. The fields of the quasi-TEM mode of the
microstrip ports are almost constant, i.e., nondispersive, throughout the
frequency band. Therefore, using the modal solutions of the expansion
frequency of 15 GHz for the entire band to compute an ALPS solution
fairs quite well.

To demonstrate the importance of modeling the dispersion of the port
correctly, we use a rectangular waveguide with dimensions of 8� 16
mm2 as an example. We have first employed fifth-order polynomials
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Fig. 5. Effect of neglecting the dispersion of the port solution for a rectangular
waveguide of dimensions of 8� 16 mm . ALPS(c) is the ALPS solution
neglecting the dispersion of the port solution.

Fig. 6. Top view of a microstrip low-pass filter.w1 = 25 mil, w2 = 60 mil,
w3 = 125 mil, `1 = 65 mil, `2 = 45 mil, and`3 = 25 mil.

to interpolate the modal solutions of the ports. This problem is solved
with the ALPS method. Again, the agreement with the discrete sweep
is excellent, as shown in Fig. 5. We then assume the modal solutions
are constant throughout the whole band. By using the modal solutions
of 15 GHz, the numerical results display larger discrepancy away from
15 GHz.

To test the reliability of the ALPS, we consider a microstrip low-pass
filter. The top view of the filter is depicted in Fig. 6. The substrate is
25-mil thick, and has a relative dielectric constant of 9.6. Due to the
presence of three stubs, the spectral response curve of this filter from
2 to 20 GHz has three poles. It is suspected that picking the expansion
frequency too close to one of the poles may have significant impacts
on the accuracy of other two poles. Therefore, in Fig. 7, we move the
point of expansion to reveal its effect on the AWE and ALPS solutions.
If the point of expansion is chosen away from the poles at 12 GHz,
both methods produce reasonable solutions. However, as in Fig. 8, if
the point of expansion is close to one of the poles, the AWE completely
misses the other two poles, while the ALPS unaffectedly maintains its
accuracy throughout the whole band.

The last problem is a waveguide transition from 4� 6 to 8� 16 mm2

guides, shown in Fig. 9. Initially, we compute the ALPS solution with
a single propagating mode. In Fig. 10, the ALPS shows a couple of

Fig. 7. Comparison of scattering parameters for Fig. 6. The point of expansion
is 12 GHz.

Fig. 8. Effect of shifting the point of expansion for Fig. 6. The point of
expansion is 15 GHz.

Fig. 9. Waveguide transition from 4� 6 to 8� 16 mm guides.

spurious resonance peaks in the band. We discover that, at this fre-
quency, the larger guide is able to support eight propagating modes.
Since we have only permitted ground-mode propagation in the numer-
ical simulation, the higher modes generated by waveguide disconti-
nuity are trapped in the cavity, producing the resonance peaks. After
rerunning the problem with eight propagating modes, the peaks dis-
appear, while the rest of response curve is little affected. Without a
reliable frequency-sweep procedure, we can hardly catch the spurious
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Fig. 10. Effect of not including all the propagating modes for Fig. 9.

peaks and, hence, realize the importance of including all the propa-
gating modes when using the transfinite-element method.

Compared to the AWE, although the ALPS spends extra time on
computing the eigenvectors of a tridiagonal matrix, it is not only more
reliable, but overall more efficient, because it can tell the range of va-
lidity and, hence, terminate at earlier time. Its computational time de-
pends on the number of poles inside the circle of convergence cov-
ering the interested band. Typically, four projecting vectors per pole
are needed. The poles near the real axis influences the frequency re-
sponse curve the most. It is unwise to ask for too big a frequency range
because this will enclose a lot of unimportant poles in the circle of con-
vergence. It is more efficient to break up a large band into a series of
smaller bands. Since each band requires its own matrix inversion, this
cost has to be balanced against the saving on the number of projecting
vectors needed. When the sparse matrix decomposition is replaced by
an iterative solver, the strategy will tilt toward more finer subdivisions
of the band.

The limitation of current procedure lies on the assumption that higher
order matrices of the polynomial matrix equation are relatively small.
In the case of high lossy problem, the entries of higher order matrices
may not be small. Numerical experiments show the procedure takes
more iterations to converge. Also, (9) is no longer an appropriate ap-
proximation of system eigenvalues. One must compute the eigenvalues
of the reduced system.
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Analysis and Design of Impedance-Transforming Planar
Marchand Baluns

Kian Sen Ang and Ian D. Robertson

Abstract—A technique for designing impedance-transforming baluns is
presented in this paper. It is based on the Marchand balun with two iden-
tical coupled lines. By varying the coupling factor of the coupled sections,
a wide range of impedance transforming ratios can be achieved. In addi-
tion, a resistive network added between the balun outputs is proposed to
achieve balun output matching and isolation. Microstrip baluns, matched
at all ports, for transforming from a 50-
 source impedance to 40-
 as
well as 160-
 load terminations are realized to demonstrate the technique.

Index Terms—Baluns, circuit analysis, couplers, impedance matching.

I. INTRODUCTION

Baluns are key components in balanced circuit topologies such as
double balanced mixers, push–pull amplifiers, and frequency doublers
[1]–[3]. Various balun configurations have been reported for applica-
tions in microwave integrated circuits (MICs) and microwave mono-
lithic integrated circuits (MMICs) [1]–[8]. Among them, the planar
version of the Marchand balun [9] is perhaps one of the most attrac-
tive due to its planar structure and wide-band performance.

The planar Marchand balun consists of two coupled sections, which
may be realized using microstrip coupled lines [5], Lange couplers [6],
multilayer coupled structures [7], or spiral coils [8]. These baluns are
usually designed through circuit simulations using full-wave electro-
magnetic analysis [1] or lumped-element models [8]. Various synthesis
techniques using coupled-line equivalent-circuit models and analyti-
cally derived scattering parameters have also been reported [10], [11].
In this paper, the planar Marchand balun is analyzed as a combination

Manuscript received November 23, 1999. This work was supported by the
Engineering and Physical Sciences Research Council. The work of K. S. Ang
was supported by the Defence Science Organization National Laboratories.

The authors are with the Microwave and Systems Research Group, School of
Electronic Engineering, Information Technology and Mathematics, University
of Surrey, Guildford, Surrey GU2 7XH, U.K. (e-mail: k.ang@eim.surrey.ac.uk).

Publisher Item Identifier S 0018-9480(01)01088-2.

0018–9480/01$10.00 © 2001 IEEE


	MTT023
	Return to Contents


