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is obtained using resonat&?2, with —90 dBc/Hz at 1-MHz offset. In-

creasing the resonator length &3 actually causes 3-dB degradation

in phase noise. Fig. 5 shows the measured phase noise improvemeni| pS—A New Fast Frequency-Sweep Procedure for
and the predlctgd |ncrea_se({)1 as gfunctlon of reS(_)na'_[or length. The Microwave Devices

curve of20log (@1, ) predicts a maximum phase-noise improvement of

35 dB with resonator length of about 200 half-wavelengths. Beyond Din-Kow Sun, Jin-Fa Lee, and Zoltan Cendes

which, the associated line losses become increasing significant such

that 7. starts to decrease and phase noise degrades with increasing

length. This trend is in agreement with the measured results. Abstract—The discretization of Maxwell equations results in a polyno-
In addition to phase-noise reduction, an increase in frequency g{%@l matrix equation in frequency. In this paper, we present a robust and

bility was also observed with increasing resonator lenath. As an in I_icient algorithm for solving the polynomial matrix equation. To solve this
ty Y gth. quation for a broad bandwidth, one previously performs a discrete fre-

cation of frequency stability, frequency pushing of the two oscillatokgyency sweep where the resulting matrix needs to be inverted at numerous
under different resonator terminating conditions is measured and giesguencies, while current procedure requires only one matrix inversion.

in Table II. With the addition of external resonators, a dramatic decrea®eeed improvements compared to the discrete sweep range from 10 to 100
in frequency pushing was observed for both oscillators. times, depending on number of resonance peaks encountered.

Index Terms—kanczos algorithm, Maxwell's equations, reduced-order
system, transfinite-element method.
V. CONCLUSION

This paper has demonstrated that oscillator frequency stabilization I. INTRODUCTION

and phase-noise reduction can be achieved using simple transmis-

sion-line resonators. A simplified derivation of the improvement in OVer the last decade, tangential vector finite-element [1] and trans-
phase noise has been verified through measured resulks- aind finite-element methods [2] have been developed for the solution of
Ka-bands monolithic oscillators. More than 20-dB improvemerMaxwe” equations. This discretization procedure results in a polyno-
in phase noise was obtained for both oscillators. These results BH&! matrix equation in frequency. Especially in a waveguide structure,
obtained through the use of widely available coaxial cables, which mie modal fields of the ports depend strongly on frequency. To compute
seem impracticably long. The actual length required, however, depend

on the frequency of operation, loss characteristics, and dielectric

constant of the transmission line. The wide availability of high-quality Manuscript received October 11, 1999.
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the response of a microwave device over a broad bandwidth, one orig-
inally performed a discrete frequency sweep where the resulting ma-
trix equation is solved at numerous frequencies. This early procedure
was very time consuming. In 1993, Yuan and Cendes [3] developed
a fast frequency-sweep procedure requiring only one matrix inversion
to compute the response over the entire band. This procedure is based
on asymptotic waveform evaluation (AWE) [4], which evaluates a re-
duced-order model of the poles and zeros of the system transfer func-
tion by forming a Taylor series approximation of the response followed
by Padé approximation. The technique is fast, but suffers inaccuracies
since it was based on a power method that converges most strongly to
the nearest mode. Due to the numerical instability of the AWE, Fel#ig. 1. Four-port microstrip structure.
mann and Freund [5] presented a more reliable Lanczos procedure for

solving a linear matrix equation in frequency. Later, Sun [6], [7] further 8
proposed an adaptive Lanczos—Padé sweep (ALPS) to solve a polyn
mial matrix equation. An ALPS is a Lanczos type of procedure that 1A
solves only linear matrix equation in frequency. When an ALPS is ap-
plied to solve a polynomial matrix equation, it linearizes the equation "

at a couple of points and, therefore, it typically requires five time-con-
suming matrix solutions.

This paper begins by deriving the polynomial matrix equation
using a transfinite-element method. Replacing the scattering matri.
with a total scattering matrix, we not only reduce the number of
right-hand-side vectors, but preserve a symmetric property for the
scattering matrix over the entire band. However, property of energy '
conservation is exactly obeyed only at the expansion frequency. i
Section Ill, we project this large dimensional matrix equation onto a 19 . s s w . s : . .

A . . [} 1] 2 k) 14 15 16 7 18 g 20
much smaller dimensional one that can be solved discretely. We the
discuss how one generates the projected vector set by block Lanczos
iteration [8] such that the vector set contains all the eigenvectors@f 2 Field dispersion of a rectangular waveguide of dimensions of
the interested band. With the computed locations of system poless 16 mnt. |Ec| is the field strength at 15 GHz.
i.e., the eigenvalues of the matrix equation, one can knowingly select

the frequency points to solve, and plot the frequency response curve, . . . .
. quency p P d y resp matrix, respectively. The matrix entries are to be computed from a set
without missing resonance peaks. The procedure is validated wi

. ! . X 0ol basis functionsy;
some microwave structures in Section V. This new ALPS procedure :

has been employed in the electromagnetics simulation package HFSS. / <

Freq (GH2)

Zii(s)= [ [V x a;- Ni Vxa;—ka;- g,(s)(?j) Q. (3)

Il. TRANSFINITE-ELEMENT FORMULATION

Thorough derivation has been shown in [9]. It should be noticedithat

The scattering problem of a typical four-port microstrip structure, ?é?_a strong function of in the case of waveguide since the modal fields

shpwn in Fig. 1, can be_ solve_d by applying transflnl_te-(.alement formlcJ)f the ports vary rapidly with frequency, as shown in Fig. 2. When
lation to the following dispersive vector wave equation:

approaching the cutoff frequency of waveguide, the field magnitude

1 — L, = reaches infinity.

Vx —VxE-ke(s)E=0 1) The right-hand side of (2) can be greatly simplified with a total scat-
fir tering matrixS’ = I + S into

where
Zrr ZipM Er
s= 27 L (s)=(s+1)—2— + (s+1)%, M Zpr M"ZppM + jwopio(1+s)I | \ P
Wo JWoEo
0

. . . o . . . = 2jwopo(l . (4
andw, is the point of expansion. This gives rise to the following matrix Jwotto(145) <I> “)
equation:

Since the frequency dependency of the right-hand-side vectors is fac-
Zrr ZrpM Er torized, computational time is considerably reduced.
MY Zp MY ZppM + jwopo(1+s)I | \ S
. New ALPS
—-ZipM @
N\ zear 4+ (14 5)T A. Formulation

Equation (4) can be approximated by the following polynomial ma-

where the subscriptsand P distinguish the unknown coefficients as-trix equation:
sociated with the interior and port solutiond, is a matrix mapping

interior solution on the ports to the modal coefficients, is a mul-

ticolumn interior solution vector, anfl is the generalized scattering

4,-3 51) (s) = b(s) 5)

=1
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wheren 4 is determined by bounding the difference between (4) and
(5). Testing (5) with a vector s&f = {vi, v2, ..., v, } and looking
for a solutionz(s) = Vz(s) gives

77/‘4
(HO - Z .9iHi> #(s) = V7b(s) (6)

=1

whereH, = VT AV, k= 0,...,n4. Therefore, the solution of (5)

is
- 1 T
z(s) =V Y b(s). @
<HO - Z "”iH’) Fig. 3. Microstrip T-junction.
=1
The dimension of (7), i.en\, is small enough to be solved with the "=
Gaussian solver to perform a discrete sweep. 08
The S-matrix that we are interested in is

03 Discrete

1

vie—1 (8) o N e

=1

05 —

S(s)=2(1+ s)ve" V.

st2]

04 -

wheree? = [0 I] and~ = jwouo. Notice thatS(s) = ST(s). At the
point of expansiors = 0,7 = (1,0,0...0)7, 2 = A7 '56(0) and, 0k
therefore, the solution is exact. 02
The following theorem can be proven for the transfinite-element
method.
Theorem 1: For a lossless system, ti%ematrix computed directly 0, . 3 ) A - = o P
from (2) obeys the property of energy conservation, ké.; = 1. FreqiGHz)

Proof: Equation (2) can be solved by

Fig. 4. Comparison of scattering parameters for Fig. 3. ALPS(c) is the ALPS

S=Y +~(1+ 5)1)71(_3, +v(1+s)]) solution neglecting the dispersion of the port solution.
where Since the poles converge more or less sequentially ac-
Y = MT ZooM — MT Zor 2= 710 M cording to its distance from the expansion frequency on the
o mr Prop 2reat: complex plane, one can terminate the procedure if the latest
For a lossless systerd, is real and, thus, so &, i.e.,.Y = Y. Thus converged pole is located outside the circle covering the
interested band with the center of circle at the expansion
* -1 frequency, or one can plug the solution back to (5) to
SS:(Y (1 ,I) (—Y (1 ,I) , or or _ () to
+(1+s9) +a(l+s) compute the residues for the entire band, and examine it if
(} (14 s)I)_l (—Y — 1+ s)I) -1 a good solution is reached.
Step 3) Computdd;’s.
In theory, the ALPS solution satisfies the property only at the expansionSteP 4) To computé(s), solve (6) directly according to the loca-
frequency, but our numerical results obey it fairly well over the entire tions of the estimated poles. If the poles are close to the real
band. axis, we need to compute many points around the poles.
B. Procedure IV. NUMERICAL RESULTS

The entire procedure consisting of computing the polynomial matrix Since the numerical solution of the discrete sweep of (2) is the exact
equation, generating the vector set, and solving the matrix equatiorsofution of the fast sweep, we shall compare ALPS results with this
smaller dimension is listed in the following steps. results. The first geometry, shown in Fig. 3, is a microstrip T-junc-

Step 1) Compute the frequency dependency of the matrix entriéen, where the infinitively thin microstrip is 0.23-mm wide, the stub

This is done by adaptively adding more points until enougi 0.51-mm wide and 1.53-mm long, the substrate is 0.254-mm thick,
frequency points are chosen to provide a good approximand the relative dielectric constant of the substrate is 9.9. This problem
tion [10]. Step 1 gives you 4 and (5). is solved with both the ALPS and AWE methods. As shown in Fig. 4,

Step 2) Start Wiﬂ(?) to generatd” for the (4,, A;) pair by block the numerical results of both methods are indistinguishable, and both

Lanczos iteration with selective orthogonalization [11]agree with the discrete sweep. The fields of the quasi-TEM mode of the

If the selective orthogonalization is not employed, th@nicrostrip ports are almost constant, i.e., nondispersive, throughout the

Lanczos iteration will eventually fail. Using the facts thafrequency band. Therefore, using the modal solutions of the expansion

A; = 0wheni > 3andA, = 0.54,, one can estimate frequency of 15 GHz for the entire band to compute an ALPS solution

the poles of (5), i.ep, from the computed eigenvalues offairs quite well.

(4,, A1), )\ by the following relationship: To demonstrate the importance of modeling the dispersion of the port

correctly, we use a rectangular waveguide with dimensions>ofl®

p=—-14++vV1+2A (9) mm’* as an example. We have first employed fifth-order polynomials
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Fig.5. Effect of neglecting the dispersion of the port solution for a rectangulig. 7. Comparison of scattering parameters for Fig. 6. The point of expansion
waveguide of dimensions of & 16 mn¥. ALPS(c) is the ALPS solution is 12 GHz.
neglecting the dispersion of the port solution.
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(—l> Fig. 8. Effect of shifting the point of expansion for Fig. 6. The point of
3 expansion is 15 GHz.

Fig. 6. Top view of a microstrip low-pass filtews1 = 25 mil, w2 = 60 mil,
w3 = 125 mil, /1 = 65 mil, £2 = 45 mil, and{3 = 25 mil.

to interpolate the modal solutions of the ports. This problem is solved
with the ALPS method. Again, the agreement with the discrete sweep
is excellent, as shown in Fig. 5. We then assume the modal solutions
are constant throughout the whole band. By using the modal solutions
of 15 GHz, the numerical results display larger discrepancy away from
15 GHz.
To test the reliability of the ALPS, we consider a microstrip low-pass
filter. The top view of the filter is depicted in Fig. 6. The substrate is
25-mil thick, and has a relative dielectric constant of 9.6. Due to the
presence of three stubs, the spectral response curve of this filter from
2 to 20 GHz has three poles. It is suspected that picking the expansion 10 mm
frequency too close to one of the poles may have significant impacts ) . )
on the accuracy of other two poles. Therefore, in Fig. 7, we move thig- 9. Waveguide transition fromx 6 to 8 16 mnt guides.
point of expansion to reveal its effect on the AWE and ALPS solutions.
If the point of expansion is chosen away from the poles at 12 GHgpurious resonance peaks in the band. We discover that, at this fre-
both methods produce reasonable solutions. However, as in Fig. &ukency, the larger guide is able to support eight propagating modes.
the point of expansion is close to one of the poles, the AWE completedynce we have only permitted ground-mode propagation in the numer-
misses the other two poles, while the ALPS unaffectedly maintains ital simulation, the higher modes generated by waveguide disconti-
accuracy throughout the whole band. nuity are trapped in the cavity, producing the resonance peaks. After
The last problem is a waveguide transition from $to 8x 16 mn?  rerunning the problem with eight propagating modes, the peaks dis-
guides, shown in Fig. 9. Initially, we compute the ALPS solution wittappear, while the rest of response curve is little affected. Without a
a single propagating mode. In Fig. 10, the ALPS shows a couple refiable frequency-sweep procedure, we can hardly catch the spurious



402 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

[5] P.Feldmannand R. W. Freund, “Efficient linear circuit analysis by Padé
03 E approximation via the Lanczos procesksEE Trans. Computer-Aided
Design vol. 14, pp. 639-649, May 1995.
BWE L e [6] D.-K. Sun, “ALPS—An adaptive Lanczos-Padé spectral solution of
wE ALPS Bmoces mixed-potential integral equation,” dSNC/URSI Radio Sci. Meeting
Dig., July 1996, p. 30.
06 £ [7] D.-K. Sun, “ALPS—AnN adaptive Lanczos—Padé spectral solution of
= i mixed-potential integral equation,Comput. Methods Appl. Mech.
£ Eng, vol. 169, pp. 425-432, 1999.

[8] C. Lanczos, “An iterative method for the solution of the eigenvalue
problem of linear differential and integral operatord,’Res. Natl. Bur.
Stand, vol. 45, pp. 255-282, 1950.

[9] J. E. Bracken, D.-K. Sun, and Z. Cendes$,-tiomain methods for si-
multaneous time and frequency characterization of electromagnetic de-
vices,” |IEEE Trans. Microwave Theory Techol. 47, pp. 1277-1290,

. ) ) : - Sept. 1998.
E) 30 3 2 13 34 5 [10] E.H. Newman, “Generation of wide-band data from the method of mo-
Freq(GHz) ments by interpolating the impedance matrikFEE Antennas Prop-

agat, vol. 30, pp. 1820-1824, Dec. 1988.
[11] B. N. Parlett and D. S. Scott, “The Lanczos algorithm with selective

Fig. 10.  Effect of not including all the propagating modes for Fig. 9. orthogonalization,Math. Comput.vol. 33, no. 145, pp. 217238, 1979.

peaks and, hence, realize the importance of including all the propa-
gating modes when using the transfinite-element method.

Compared to the AWE, although the ALPS spends extra time on
computing the eigenvectors of a tridiagonal matrix, it is not only more . . i
reliable, but overall more efficient, because it can tell the range of va'An"’“yS’IS and Design of Impedance-Transforming Planar
lidity and, hence, terminate at earlier time. Its computational time de- Marchand Baluns
pends on the number of poles inside the circle of convergence cov-
ering the interested band. Typically, four projecting vectors per pole
are needed. The poles near the real axis influences the frequency re-
sponse C‘”Ye the most. Itis unWlse.to ask for too b'g a freqyency rang&pstract—A technique for designing impedance-transforming baluns is
because this will enclose a lot of unimportant poles in the circle of copresented in this paper. It is based on the Marchand balun with two iden-
vergence. It is more efficient to break up a large band into a seriestiofl coupled lines. By varying the coupling factor of the coupled sections,

smaller bands. Since each band requires its own matrix inversion, thigide range of impedance transforming ratios can be achieved. In addi-
(g?ﬁ a resistive network added between the balun outputs is proposed to

Kian Sen Ang and lan D. Robertson

cost has to be balanced against the sa\{|ng on the ngr.nbe.r of projec eve balun output matching and isolation. Microstrip baluns, matched
vectors needed. When the sparse matrix decomposition is replacegydyil ports, for transforming from a 50- 2 source impedance to 462 as
an iterative solver, the strategy will tilt toward more finer subdivisionsell as 160£2 load terminations are realized to demonstrate the technique.
of the b_ar_1d. . . . . Index Terms—Baluns, circuit analysis, couplers, impedance matching.
The limitation of current procedure lies on the assumption that higher
order matrices of the polynomial matrix equation are relatively small.
In the case of high lossy problem, the entries of higher order matrices |. INTRODUCTION

may n_ot bPT small. Numerical experlm_ents show the procedu_re tal(eﬁaluns are key components in balanced circuit topologies such as
more |ter_at|ons to converge. Also, (9) is no longer an appropnate ouble balanced mixers, push—pull amplifiers, and frequency doublers
proximation of system eigenvalues. One must compute the elgenvalmg[:g]. Various balun configurations have been reported for applica-
of the reduced system. tions in microwave integrated circuits (MICs) and microwave mono-
lithic integrated circuits (MMICs) [1]-[8]. Among them, the planar
version of the Marchand balun [9] is perhaps one of the most attrac-
tive due to its planar structure and wide-band performance.

The authors would like to thank their colleague, Dr. R. Dy- The planar Marchand balun consists of two coupled sections, which
czij-Edlinger, Ansoft Corporation, Pittsburgh, PA, for his ingeniou§'ay be realized using microstrip coupled lines [S], Lange couplers [6],
insight. multilayer coupled structures [7], or spiral coils [8]. These baluns are

usually designed through circuit simulations using full-wave electro-

magnetic analysis [1] or lumped-element models [8]. Various synthesis
REFERENCES techniques using coupled-line equivalent-circuit models and analyti-

cally derived scattering parameters have also been reported [10], [11].
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